
22 Digital Fundamentals

for a collection of logic gates and flops that are controlled by a common clock. The ripple counter is
not synchronous, even though it is controlled by a clock, because each flop has its own clock, which
leads to the undesirable ripple output characteristic previously mentioned. A synchronous circuit has
all of its flops transition at the same time so that they settle at the same time, with a resultant im-
provement in performance. Another benefit of synchronous logic is easier circuit analysis, because
all flops change at the same time.

Designing a synchronous counter requires the addition of logic to calculate the next count value
based on the current count value. Figure 1.15 shows a high-level block diagram of a synchronous
counter and is also representative of synchronous logic in general. Synchronous circuits consist of
state-full elements (flops), with combinatorial logic providing feedback to generate the next state
based on the current state. Combinatorial logic is the term used to describe logic gates that have no
state on their own. Inputs flow directly through combinatorial logic to outputs and must be captured
by flops to preserve their state.

An example of synchronous logic design can be made of converting the three-bit ripple counter
into a synchronous equivalent. Counters are a common logic structure, and they can be designed in a
variety of ways. The Boolean equations for small counters may be directly solved using a truth table
and K-map. Larger counters may be assembled in regular structures using binary adders that gener-
ate the next count value by adding 1 to the current value. A three-bit counter is easily handled with a
truth-table methodology. The basic task is to create a truth table relating each possible current state
to a next state as shown in Table 1.12.

TABLE 1.12 Three-Bit Counter Truth Table

Reset Current State Next State

1 XXX 000

0 000 001

0 001 010

0 010 011

0 011 100

0 100 101

0 101 110

0 110 111

0 111 000

Next State
Logic

Count State
Flip-Flops

Count Value

Reset

Clock

FIGURE 1.15 Synchronous counter block diagram.

-Balch.book Page 22 Thursday, May 15, 2003 3:46 PM

Digital Logic 23

Three Boolean equations are necessary, one for each bit that feeds back to the count state flops. If
the flop inputs are labeled D[2:0], the outputs are labeled Q[2:0], and an active-high synchronous re-
set is defined, the following equations can be developed:

Each equation’s output is forced to 0 when RESET is asserted. Otherwise, the counter increments on
each rising clock edge. Synchronous logic design allows any function to be implemented by chang-
ing the feedback logic. It would not be difficult to change the counter logic to count only odd or even
numbers, or to count only as high as 5 before rolling over to 0. Unlike the ripple counter, whose
structure supports a fixed counting sequence, next state logic can be defined arbitrarily according to
an application’s needs.

1.10 SYNCHRONOUS TIMING ANALYSIS

Logic elements, including flip-flops and gates, are physical devices that have finite response times to
stimuli. Each of these elements exhibits a certain propagation delay between the time that an input is
presented and the time that an output is generated. As more gates are chained together to create more
complex logic functions, the overall propagation delay of signals between the end points increases.
Flip-flops are triggered by the rising edge of a clock to load their new state, requiring that the input
to the flip-flop is stable prior to the rising edge. Similarly, a flip-flop’s output stabilizes at a new state
some time after the rising edge. In between the output of a flip-flop and the input of another flip-flop
is an arbitrary collection of logic gates, as seen in the preceding synchronous counter circuit. Syn-
chronous timing analysis is the study of how the various delays in a synchronous circuit combine to
limit the speed at which that circuit can operate. As might be expected, circuits with lesser delays are
able to run faster.

A clock breaks time into discrete intervals that are each the duration of a single clock period.
From a timing analysis perspective, each clock period is identical to the last, because each rising
clock edge is a new flop triggering event. Therefore, timing analysis considers a circuit’s delays over
one clock period, between successive rising (or falling) clock edges. Knowing that a wide range of
clock frequencies can be applied to a circuit, the question of time arises of how fast the clock can go
before the circuit stops working reliably. The answer is that the clock must be slow enough to allow
sufficient time for the output of a flop to stabilize, for the signal to propagate through the combinato-
rial logic gates, and for the input of the destination flop to stabilize. The clock must also be slow
enough for the flop to reliably detect each edge. Each flop circuit is characterized by a minimum
clock pulse width that must be met. Failing to meet this minimum time can result in the flop missing
clock events.

Timing analysis revolves around the basic timing parameters of a flop: input setup time (tSU), in-
put hold time (tH), and clock-to-out time (tCO). Setup time specifies the time immediately preceding
the rising edge of the clock by which the input must be stable. If the input changes too soon before
the clock edge, the electrical circuitry within the flop will not have enough time to properly recog-
nize the state of the input. Hold time places a restriction on how soon after the clock edge the input

D 0[] Q 0[]&RESET=

D 1[] Q 0[]&Q 1[]() Q 0[]&Q 1[]()+{ }&RESET Q 0[] Q 1[]⊕()&RESET= =

D 2[] Q 2[]&Q 1[]&Q 0[]() Q 2[]&Q 1[]() Q 2[]&Q 0[]()+ +{ }&RESET=

-Balch.book Page 23 Thursday, May 15, 2003 3:46 PM

